Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(4): 31, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635243

RESUMO

Purpose: The poor visual outcomes associated with fungal keratitis (FK) underscore a need to identify fungal pathways that can serve as novel antifungal targets. In this report, we investigated whether hypoxia develops in the FK cornea and, by extension, if fungal hypoxia adaptation is essential for virulence in this setting. Methods: C57BL/6J mice were inoculated with Aspergillus fumigatus and Fusarium solani var. petroliphilum via topical overlay or intrastromal injection. At various time points post-inoculation (p.i.), animals were injected with pimonidazole for the detection of tissue hypoxia through immunofluorescence imaging. The A. fumigatus srbA gene was deleted through Cas9-mediated homologous recombination and its virulence was assessed in the topical infection model using slit-lamp microscopy and optical coherence tomography (OCT). Results: Topical inoculation with A. fumigatus resulted in diffuse pimonidazole staining across the epithelial and endothelial layers within 6 hours. Stromal hypoxia was evident by 48 hours p.i., which corresponded to leukocytic infiltration. Intrastromal inoculation with either A. fumigatus or F. solani similarly led to diffuse staining patterns across all corneal cell layers. The A. fumigatus srbA deletion mutant was unable to grow at oxygen levels below 3% in vitro, and corneas inoculated with the mutant failed to develop signs of corneal opacification, inflammation, or fungal burden. Conclusions: These results suggest that fungal antigen rapidly drives the development of corneal hypoxia, thus rendering fungal SrbA or related pathways essential for the establishment of infection. Such pathways may therefore serve as targets for novel antifungal intervention.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Fusarium , Nitroimidazóis , Camundongos , Animais , Camundongos Endogâmicos C57BL , Aspergillus fumigatus , Antifúngicos , Hipóxia
2.
mBio ; : e0085924, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639536

RESUMO

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.

3.
Clin Infect Dis ; 78(Supplement_2): S175-S182, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662705

RESUMO

BACKGROUND: Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS: We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS: We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS: Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.


Assuntos
Infecções Assintomáticas , Doença de Chagas , Leishmaniose Visceral , Modelos Teóricos , Doenças Negligenciadas , Humanos , Doenças Negligenciadas/prevenção & controle , Doenças Negligenciadas/epidemiologia , Doença de Chagas/transmissão , Doença de Chagas/prevenção & controle , Doença de Chagas/epidemiologia , Doença de Chagas/tratamento farmacológico , Infecções Assintomáticas/epidemiologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/transmissão , Leishmaniose Visceral/tratamento farmacológico , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/tratamento farmacológico , Índia/epidemiologia , Animais
4.
Malar J ; 23(1): 38, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308253

RESUMO

BACKGROUND: It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária , Humanos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Tailândia/epidemiologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/análise , Malária/epidemiologia , Aminoquinolinas/efeitos adversos
5.
Child Adolesc Psychiatr Clin N Am ; 33(1): 33-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981334

RESUMO

States all across the United States are experiencing a shortage in their behavioral health workforces. Although many studies have suggested factors that contribute to or mitigate the shortage-particularly in rural and underserved areas-no nationwide guidance exists on best practices to develop a behavioral health workforce that can meet community need. The Behavioral Health Education of Nebraska (BHECN) can serve as an exemplar for others looking to take a multifaceted approach to develop the behavioral health workforce in their community. Evidence from published studies is reviewed, and BHECN's approach and practices are explained.


Assuntos
Mão de Obra em Saúde , Psiquiatria , Estados Unidos , Humanos , Nebraska , Recursos Humanos , Educação em Saúde
6.
PLoS One ; 18(11): e0294200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967096

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymopathy caused by mutations in the G6PD gene. A medical concern associated with G6PD deficiency is acute hemolytic anemia induced by certain foods, drugs, and infections. Although phenotypic tests can correctly identify hemizygous males, as well as homozygous and compound heterozygous females, heterozygous females with a wide range of G6PD activity may be misclassified as normal. This study aimed to develop multiplex high-resolution melting (HRM) analyses to enable the accurate detection of G6PD mutations, especially among females with heterozygous deficiency. Multiplex HRM assays were developed to detect six G6PD variants, i.e., G6PD Gaohe (c.95A>G), G6PD Chinese-4 (c.392G>T), G6PD Mahidol (c.487G>A), G6PD Viangchan (c.871G>A), G6PD Chinese-5 (c.1024C>T), and G6PD Union (c.1360C>T) in two reactions. The assays were validated and then applied to genotype G6PD mutations in 248 Thai females. The sensitivity of the HRM assays developed was 100% [95% confidence interval (CI): 94.40%-100%] with a specificity of 100% (95% CI: 88.78%-100%) for detecting these six mutations. The prevalence of G6PD deficiency was estimated as 3.63% (9/248) for G6PD deficiency and 31.05% (77/248) for intermediate deficiency by phenotypic assay. The developed HRM assays identified three participants with normal enzyme activity as heterozygous for G6PD Viangchan. Interestingly, a deletion in intron 5 nucleotide position 637/638 (c.486-34delT) was also detected by the developed HRM assays. G6PD genotyping revealed a total of 12 G6PD genotypes, with a high prevalence of intronic variants. Our results suggested that HRM analysis-based genotyping is a simple and reliable approach for detecting G6PD mutations, and could be used to prevent the misdiagnosis of heterozygous females by phenotypic assay. This study also sheds light on the possibility of overlooking intronic variants, which could affect G6PD expression and contribute to enzyme deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Feminino , Humanos , Genótipo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Mutação , População do Sudeste Asiático
7.
PLoS Pathog ; 19(10): e1011435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906600

RESUMO

The Aspergillus fumigatus unfolded protein response (UPR) is a two-component relay consisting of the ER-bound IreA protein, which splices and activates the mRNA of the transcription factor HacA. Spliced hacA accumulates under conditions of acute ER stress in vitro, and UPR null mutants are hypovirulent in a murine model of invasive pulmonary infection. In this report, we demonstrate that a hacA deletion mutant (ΔhacA) is furthermore avirulent in a model of fungal keratitis, a corneal infection, and an important cause of ocular morbidity and unilateral blindness worldwide. Interestingly, we demonstrate that A. fumigatus hacA is spliced in infected lung samples, but not in the cornea, suggesting the amount of ER stress experienced by the fungus varies upon the host niche. To better understand how the UPR contributes to fungal cell biology across a spectrum of ER-stress levels, we employed transcriptomics on the wild-type and ΔhacA strains in glucose minimal media (low stress), glucose minimal media with dithiothreitol (high stress), and gelatin minimal media as a proxy for the nutrient stress encountered in the cornea (mid-level stress). These data altogether reveal a unique HacA-dependent transcriptome under each condition, suggesting that HacA activity is finely-tuned and required for proper fungal adaptation in each environment. Taken together, our results indicate that the fungal UPR could serve as an important antifungal target in the setting of both invasive pulmonary and corneal infections.


Assuntos
Aspergillus fumigatus , Ceratite , Animais , Camundongos , Resposta a Proteínas não Dobradas , Ceratite/genética , Nutrientes , Glucose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Microbiol Spectr ; 11(3): e0504422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212699

RESUMO

The COVID-19 pandemic has given rise to numerous commercially available antigen rapid diagnostic tests (Ag-RDTs). To generate and to share accurate and independent data with the global community requires multisite prospective diagnostic evaluations of Ag-RDTs. This report describes the clinical evaluation of the OnSite COVID-19 rapid test (CTK Biotech, CA, USA) in Brazil and the United Kingdom. A total of 496 paired nasopharyngeal (NP) swabs were collected from symptomatic health care workers at Hospital das Clínicas in São Paulo, Brazil, and 211 NP swabs were collected from symptomatic participants at a COVID-19 drive-through testing site in Liverpool, United Kingdom. Swabs were analyzed by Ag-RDT, and results were compared to quantitative reverse transcriptase PCR (RT-qPCR). The clinical sensitivity of the OnSite COVID-19 rapid test in Brazil was 90.3% (95% confidence interval [CI], 75.1 to 96.7%) and in the United Kingdom was 75.3% (95% CI, 64.6 to 83.6%). The clinical specificity in Brazil was 99.4% (95% CI, 98.1 to 99.8%) and in the United Kingdom was 95.5% (95% CI, 90.6 to 97.9%). Concurrently, analytical evaluation of the Ag-RDT was assessed using direct culture supernatant of SARS-CoV-2 strains from wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages. This study provides comparative performance of an Ag-RDT across two different settings, geographical areas, and populations. Overall, the OnSite Ag-RDT demonstrated a lower clinical sensitivity than claimed by the manufacturer. The sensitivity and specificity from the Brazil study fulfilled the performance criteria determined by the World Health Organization, but the performance obtained from the UK study failed to do. Further evaluation of Ag-RDTs should include harmonized protocols between laboratories to facilitate comparison between settings. IMPORTANCE Evaluating rapid diagnostic tests in diverse populations is essential to improving diagnostic responses as it gives an indication of the accuracy in real-world scenarios. In the case of rapid diagnostic testing within this pandemic, lateral flow tests that meet the minimum requirements for sensitivity and specificity can play a key role in increasing testing capacity, allowing timely clinical management of those infected, and protecting health care systems. This is particularly valuable in settings where access to the test gold standard is often restricted.


Assuntos
COVID-19 , Humanos , Brasil , COVID-19/diagnóstico , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Reino Unido , Biotecnologia , Teste para COVID-19
9.
Nat Commun ; 14(1): 2052, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045836

RESUMO

Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.


Assuntos
Aspergilose , Micoses , Humanos , Camundongos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Caspofungina/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Modelos Animais de Doenças , Aspergilose/microbiologia , Micoses/tratamento farmacológico , Aspergillus fumigatus , Candida albicans , Farmacorresistência Fúngica
10.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112887

RESUMO

In Senegal, the burden of dengue is increasing and expanding. As case management and traditional diagnostic techniques can be difficult to implement, rapid diagnostic tests (RDTs) deployed at point of care are ideal for investigating active outbreaks. The aim of this study was to evaluate the diagnostic performance of the Dengue NS1 and Dengue IgM/IgG RDTs on the serum/plasma samples in a laboratory setting and in the field. During laboratory evaluation, performance of the NS1 RDT was assessed using NS1 ELISA as the gold standard. Sensitivity and specificity were 88% [75-95%] and 100% [97-100%], respectively. Performance of the IgM/IG RDT was assessed using the IgM Antibody Capture (MAC) ELISA, indirect IgG, and PRNT as gold standards. The IgM and IgG test lines respectively displayed sensitivities of 94% [83-99%] and 70% [59-79%] and specificities of 91% [84-95%] and 91% [79-98%]. In the field, the Dengue NS1 RDT sensitivity and specificity was 82% [60-95%] and 75% [53-90%], respectively. The IgM and IgG test lines displayed sensitivities of 86% [42-100%] and 78% [64-88%], specificities of 85% [76-92%] and 55% [36-73%], respectively. These results demonstrate that RDTs are ideal for use in a context of high prevalence or outbreak setting and can be implemented in the absence of a confirmatory test for acute and convalescent patients.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/epidemiologia , Testes de Diagnóstico Rápido , Senegal/epidemiologia , Sensibilidade e Especificidade , Imunoglobulina M , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G , Anticorpos Antivirais , Proteínas não Estruturais Virais
11.
Sci Rep ; 13(1): 3887, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890186

RESUMO

The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) variants of concern (VOCs), with mutations linked to increased transmissibility, vaccine escape and virulence, has necessitated the widespread genomic surveillance of SARS-CoV-2. This has placed a strain on global sequencing capacity, especially in areas lacking the resources for large scale sequencing activities. Here we have developed three separate multiplex high-resolution melting assays to enable the identification of Alpha, Beta, Delta and Omicron VOCs. The assays were evaluated against whole genome sequencing on upper-respiratory swab samples collected during the Alpha, Delta and Omicron [BA.1] waves of the UK pandemic. The sensitivities of the eight individual primer sets were all 100%, and specificity ranged from 94.6 to 100%. The multiplex HRM assays have potential as a tool for high throughput surveillance of SARS-CoV-2 VOCs, particularly in areas with limited genomics facilities.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Mutação , Bioensaio , Genômica
12.
PLoS One ; 18(3): e0281925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867620

RESUMO

OBJECTIVES: In order to generate independent performance data regarding accuracy of COVID-19 antigen-based rapid diagnostic tests (Ag-RDTs), prospective diagnostic evaluation studies across multiple sites are required to evaluate their performance in different clinical settings. This report describes the clinical evaluation the GENEDIA W COVID-19 Ag Device (Green Cross Medical Science Corp., Chungbuk, Korea) and the ActiveXpress+ COVID-19 Complete Testing Kit (Edinburgh Genetics Ltd, UK), in two testing sites Peru and the United Kingdom. METHODS: Nasopharyngeal swabs collected from 456 symptomatic patients at primary points of care in Lima, Peru and 610 symptomatic participants at a COVID-19 Drive-Through testing site in Liverpool, England were analyzed by Ag-RDT and compared to RT-PCR. Analytical evaluation of both Ag-RDTs was assessed using serial dilutions of direct culture supernatant of a clinical SARS-CoV-2 isolate from the B.1.1.7 lineage. RESULTS: For GENEDIA brand, the values of overall sensitivity and specificity were 60.4% [95% CI 52.4-67.9%], and 99.2% [95% CI 97.6-99.7%] respectively; and for Active Xpress+ the overall values of sensitivity and specificity were 66.2% [95% CI 54.0-76.5%], and 99.6% [95% CI 97.9-99.9%] respectively. The analytical limit of detection was determined at 5.0 x 102 pfu/ml what equals to approximately 1.0 x 104 gcn/ml for both Ag-RDTs. The UK cohort had lower median Ct values compared to that of Peru during both evaluations. When split by Ct, both Ag-RDTs had optimum sensitivities at Ct<20 (in Peru; 95% [95% CI 76.4-99.1%] and 100.0% [95% CI 74.1-100.0%] and in the UK; 59.2% [95% CI 44.2-73.0%] and 100.0% [95% CI 15.8-100.0%], for the GENDIA and the ActiveXpress+, respectively). CONCLUSIONS: Whilst the overall clinical sensitivity of the Genedia did not meet WHO minimum performance requirements for rapid immunoassays in either cohort, the ActiveXpress+ did so for the small UK cohort. This study illustrates comparative performance of Ag-RDTs across two global settings and considers the different approaches in evaluation methods.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peru , Estudos Prospectivos , Reino Unido , Teste para COVID-19
13.
Malar J ; 22(1): 60, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803858

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) are effective tools to diagnose and inform the treatment of malaria in adults and children. The recent development of a highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum has prompted questions over whether it could improve the diagnosis of malaria in pregnancy and pregnancy outcomes in malaria endemic areas. METHODS: This landscape review collates studies addressing the clinical performance of the HS-RDT. Thirteen studies were identified comparing the HS-RDT and conventional RDT (co-RDT) to molecular methods to detect malaria in pregnancy. Using data from five completed studies, the association of epidemiological and pregnancy-related factors on the sensitivity of HS-RDT, and comparisons with co-RDT were investigated. The studies were conducted in 4 countries over a range of transmission intensities in largely asymptomatic women. RESULTS: Sensitivity of both RDTs varied widely (HS-RDT range 19.6 to 85.7%, co-RDT range 22.8 to 82.8% compared to molecular testing) yet HS-RDT detected individuals with similar parasite densities across all the studies including different geographies and transmission areas [geometric mean parasitaemia around 100 parasites per µL (p/µL)]. HS-RDTs were capable of detecting low-density parasitaemias and in one study detected around 30% of infections with parasite densities of 0-2 p/µL compared to the co-RDT in the same study which detected around 15%. CONCLUSION: The HS-RDT has a slightly higher analytical sensitivity to detect malaria infections in pregnancy than co-RDT but this mostly translates to only fractional and not statistically significant improvement in clinical performance by gravidity, trimester, geography or transmission intensity. The analysis presented here highlights the need for larger and more studies to evaluate incremental improvements in RDTs. The HS-RDT could be used in any situation where co-RDT are currently used for P. falciparum diagnosis, if storage conditions can be adhered to.


Assuntos
Malária Falciparum , Malária , Adulto , Gravidez , Criança , Humanos , Feminino , Plasmodium falciparum , Testes de Diagnóstico Rápido , Sensibilidade e Especificidade , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Testes Diagnósticos de Rotina/métodos , Antígenos de Protozoários/análise
14.
Antimicrob Resist Infect Control ; 12(1): 14, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814315

RESUMO

OBJECTIVES: Neonatal sepsis, a major cause of death amongst infants in sub-Saharan Africa, is often gut derived. Gut colonisation by Enterobacteriaceae producing extended spectrum beta-lactamase (ESBL) or carbapenemase enzymes can lead to antimicrobial-resistant (AMR) or untreatable infections. We sought to explore the rates of colonisation by ESBL or carbapenemase producers in two neonatal units (NNUs) in West and East Africa. METHODS: Stool and rectal swab samples were taken at multiple timepoints from newborns admitted to the NNUs at the University College Hospital, Ibadan, Nigeria and the Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, western Kenya. Samples were tested for ESBL and carbapenemase genes using a previously validated qPCR assay. Kaplan-Meier survival analysis was used to examine colonisation rates at both sites. RESULTS: In total 119 stool and rectal swab samples were taken from 42 infants admitted to the two NNUs. Colonisation with ESBL (37 infants, 89%) was more common than with carbapenemase producers (26, 62.4%; P = 0.093). Median survival time before colonisation with ESBL organisms was 7 days and with carbapenemase producers 16 days (P = 0.035). The majority of ESBL genes detected belonged to the CTX-M-1 (36/38; 95%), and CTX-M-9 (2/36; 5%) groups, and the most prevalent carbapenemase was blaNDM (27/29, 93%). CONCLUSIONS: Gut colonisation of neonates by AMR organisms was common and occurred rapidly in NNUs in Kenya and Nigeria. Active surveillance of colonisation will improve the understanding of AMR in these settings and guide infection control and antibiotic prescribing practice to improve clinical outcomes.


Assuntos
Infecções por Enterobacteriaceae , Humanos , Recém-Nascido , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Quênia , Nigéria , Unidades Hospitalares
15.
BMC Infect Dis ; 23(1): 110, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823583

RESUMO

BACKGROUND: Rapid determination of an individual's antibody status can be beneficial in understanding an individual's immune response to SARS-CoV-2 and for initiation of therapies that are only deemed effective in sero-negative individuals. Antibody lateral flow tests (LFTs) have potential to address this need as a rapid, point of care test. METHODS: Here we present a proof-of-concept evaluation of eight LFT brands using sera from 95 vaccinated individuals to determine sensitivity for detecting vaccination generated antibodies. Samples were analysed on eight different brands of antibody LFT and an automated chemiluminescent microparticle immunoassay (CMIA) that identifies anti-spike antibodies which was used as our reference standard. RESULTS: All 95 (100%) participants tested positive for anti-spike antibodies by the chemiluminescent microparticle immunoassay (CMIA) reference standard post-dose two of their SARS-CoV-2 vaccine: BNT162b2 (Pfizer/BioNTech, n = 60), AZD1222 (AstraZeneca, n = 31), mRNA-1273 (Moderna, n = 2) and Undeclared Vaccine Brand (n = 2). Sensitivity increased from dose one to dose two in six out of eight LFTs with three tests achieving 100% sensitivity at dose two in detecting anti-spike antibodies. CONCLUSIONS: These tests are demonstrated to be highly sensitive to detect raised antibody levels in vaccinated individuals. RDTs are low cost and rapid alternatives to ELISA based systems.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais , Vacinação
16.
PLoS One ; 18(1): e0280908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706119

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic has caused an unprecedented strain on healthcare systems worldwide, including the United Kingdom National Health Service (NHS). We conducted an observational cohort study of SARS-CoV-2 infection in frontline healthcare workers (HCW) working in an acute NHS Trust during the first wave of the pandemic, to answer emerging questions surrounding SARS-CoV-2 infection, diagnosis, transmission and control. METHODS: Using self-collected weekly saliva and twice weekly combined oropharyngeal/nasopharyngeal (OP/NP) samples, in addition to self-assessed symptom profiles and isolation behaviours, we retrospectively compared SARS-CoV-2 detection by RT-qPCR of saliva and OP/NP samples. We report the association with contemporaneous symptoms and isolation behaviour. RESULTS: Over a 12-week period from 30th March 2020, 40·0% (n = 34/85, 95% confidence interval 31·3-51·8%) HCW had evidence of SARS-CoV-2 infection by surveillance OP/NP swab and/or saliva sample. Symptoms were reported by 47·1% (n = 40) and self-isolation by 25·9% (n = 22) participants. Only 44.1% (n = 15/34) participants with SARS-CoV-2 infection reported any symptoms within 14 days of a positive result and only 29·4% (n = 10/34) reported self-isolation periods. Overall agreement between paired saliva and OP/NP swabs was 93·4% (n = 211/226 pairs) but rates of positive concordance were low. In paired samples with at least one positive result, 35·0% (n = 7/20) were positive exclusively by OP/NP swab, 40·0% (n = 8/20) exclusively by saliva and in only 25·0% (n = 5/20) were the OP/NP and saliva result both positive. CONCLUSIONS: HCW are a potential source of SARS-CoV-2 transmission in hospitals and symptom screening will identify the minority of infections. Without routine asymptomatic SARS-CoV-2 screening, it is likely that HCW with SARS-CoV-2 infection would continue to attend work. Saliva, in addition to OP/NP swab testing, facilitated ascertainment of symptomatic and asymptomatic SARS-CoV-2 infections. Combined saliva and OP/NP swab sampling would improve detection of SARS-CoV-2 for surveillance and is recommended for a high sensitivity strategy.


Assuntos
COVID-19 , Saliva , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudos de Coortes , Estudos Retrospectivos , Medicina Estatal , Pessoal de Saúde , Manejo de Espécimes , Nasofaringe
17.
Microbiol Spectr ; 10(6): e0201222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448777

RESUMO

The COVID-19 pandemic has led to the commercialization of many antigen-based rapid diagnostic tests (Ag-RDTs), requiring independent evaluations. This report describes the clinical evaluation of the Novel Coronavirus 2019-nCoV Antigen Test (Colloidal Gold) (Beijing Hotgen Biotech Co., Ltd.), at two sites within Brazil and one in the United Kingdom. The collected samples (446 nasal swabs from Brazil and 246 nasopharyngeal samples from the UK) were analyzed by the Ag-RDT and compared to reverse transcription-quantitative PCR (RT-qPCR). Analytical evaluation of the Ag-RDT was performed using direct culture supernatants of SARS-CoV-2 strains from the wild-type (B.1), Alpha (B.1.1.7), Delta (B.1.617.2), Gamma (P.1), and Omicron (B.1.1.529) lineages. An overall sensitivity and specificity of 88.2% (95% confidence interval [CI], 81.3 to 93.3) and 100.0% (95% CI, 99.1 to 100.0), respectively, were obtained for the Brazilian and UK cohorts. The analytical limit of detection was determined as 1.0 × 103 PFU/mL (Alpha), 2.5 × 102 PFU/mL (Delta), 2.5 × 103 PFU/mL (Gamma), and 1.0 × 103 PFU/mL (Omicron), giving a viral copy equivalent of approximately 2.1 × 104 copies/mL, 9.0 × 105 copies/mL, 1.7 × 106 copies/mL, and 1.8 × 105 copies/mL for the Ag-RDT, respectively. Overall, while a higher sensitivity was claimed by the manufacturers than that found in this study, this evaluation finds that the Ag-RDT meets the WHO minimum performance requirements for sensitivity and specificity of COVID-19 Ag-RDTs. This study illustrates the comparative performance of the Hotgen Ag-RDT across two global settings and considers the different approaches in evaluation methods. IMPORTANCE Since the beginning of the SARS-CoV-2 pandemic, we have witnessed growing numbers of antigen rapid diagnostic tests (Ag-RDTs) being brought to market. In the United Kingdom, this was somewhat controlled indirectly as the government offered free tests from a small number of companies. However, as this has now ceased, individuals are responsible for their own acquisition of test kits. Similarly in Brazil, as of January 2022, pharmacies and other health care retailers are permitted to sell Ag-RDTs directly to the community. Many of these Ag-RDTs have not been externally evaluated, and results are not readily available to the public. Thus, there is now a need for a transparent evaluation of Ag-RDTs with both analytical and clinical evaluation. We present an independent review of the Novel Coronavirus 2019-nCoV Antigen Test (Colloidal Gold) (Beijing Hotgen Biotech Co., Ltd.), at two sites within Brazil and one in the United Kingdom.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil , COVID-19/diagnóstico , Pandemias , Reino Unido , Coloide de Ouro
18.
Microbiol Spectr ; 10(6): e0306922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318036

RESUMO

Fungal diseases affect millions of humans annually, yet fungal pathogens remain understudied. The mold Aspergillus flavus can cause both aspergillosis and fungal keratitis infections, but closely related species are not considered clinically relevant. To study the evolution of A. flavus pathogenicity, we examined genomic and phenotypic traits of two strains of A. flavus and three closely related species, Aspergillus arachidicola (two strains), Aspergillus parasiticus (two strains), and Aspergillus nomiae (one strain). We identified >3,000 orthologous proteins unique to A. flavus, including seven biosynthetic gene clusters present in A. flavus strains and absent in the three nonpathogens. We characterized secondary metabolite production for all seven strains under two clinically relevant conditions, temperature and salt concentration. Temperature impacted metabolite production in all species, whereas salinity did not affect production of any species. Strains of the same species produced different metabolites. Growth under stress conditions revealed additional heterogeneity within species. Using the invertebrate fungal disease model Galleria mellonella, we found virulence of strains of the same species varied widely; A. flavus strains were not more virulent than strains of the nonpathogens. In a murine model of fungal keratitis, we observed significantly lower disease severity and corneal thickness for A. arachidicola compared to other species at 48 h postinfection, but not at 72 h. Our work identifies variations in key phenotypic, chemical, and genomic attributes between A. flavus and its nonpathogenic relatives and reveals extensive strain heterogeneity in virulence that does not correspond to the currently established clinical relevance of these species. IMPORTANCE Aspergillus flavus is a filamentous fungus that causes opportunistic human infections, such as aspergillosis and fungal keratitis, but its close relatives are considered nonpathogenic. To begin understanding how this difference in pathogenicity evolved, we characterized variation in infection-relevant genomic, chemical, and phenotypic traits between strains of A. flavus and its relatives. We found extensive variation (or strain heterogeneity) within the pathogenic A. flavus as well as within its close relatives, suggesting that strain-level differences may play a major role in the ability of these fungi to cause disease. Surprisingly, we also found that the virulence of strains from species not considered to be pathogens was similar to that of A. flavus in both invertebrate and murine models of disease. These results contrast with previous studies on Aspergillus fumigatus, another major pathogen in the genus, for which significant differences in infection-relevant chemical and phenotypic traits are observed between closely related pathogenic and nonpathogenic species.


Assuntos
Aspergilose , Ceratite , Humanos , Animais , Camundongos , Aspergillus flavus/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Genômica
19.
Front Pharmacol ; 13: 1032938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339627

RESUMO

Background: Plasmodium vivax remains the malaria species posing a major threat to human health worldwide owing to its relapse mechanism. Currently, the only drugs of choice for radical cure are the 8-aminoquinolines (primaquine and tafenoquine), which are capable of killing hypnozoites and thus preventing P. vivax relapse. However, the therapeutic use of primaquine and tafenoquine is restricted because these drugs can cause hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. This study aimed to assess and understand the hemolytic risk of using 8-aminoquinolines for radical treatment in a malaria endemic area of Thailand. Methods: The prevalence of G6PD deficiency was determined using a quantitative test in 1,125 individuals. Multiplexed high-resolution meltinging (HRM) assays were developed and applied to detect 12 G6PD mutations. Furthermore, biochemical and structural characterization of G6PD variants was carried out to understand the molecular basis of enzyme deficiency. Results: The prevalence of G6PD deficiency was 6.76% (76/1,125), as assessed by a phenotypic test. Multiplexed HRM assays revealed G6PD Mahidol in 15.04% (77/512) of males and 28.38% (174/613) of females, as well as G6PD Aures in one female. G6PD activity above the 30% cut-off was detected in those carrying G6PD Mahidol, even in hemizygous male individuals. Two variants, G6PD Murcia Oristano and G6PD Songklanagarind + Viangchan, were identified for the first time in Thailand. Biochemical characterization revealed that structural instability is the primary cause of enzyme deficiency in G6PD Aures, G6PD Murcia Oristano, G6PD Songklanagarind + Viangchan, and G6PD Chinese 4 + Viangchan, with double G6PD mutations causing more severe enzyme deficiency. Conclusion: In western Thailand, up to 22% of people may be ineligible for radical cure. Routine qualitative tests may be insufficient for G6PD testing, so quantitative tests should be implemented. G6PD genotyping should also be used to confirm G6PD status, especially in female individuals suspected of having G6PD deficiency. People with double G6PD mutations are more likely to have hemolysis than are those with single G6PD mutations because the double mutations significantly reduce the catalytic activity as well as the structural stability of the protein.

20.
Sci Rep ; 12(1): 18069, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302782

RESUMO

Despite the availability of highly sensitive polymerase chain reaction (PCR)-based methods, the dearth of remotely deployable diagnostic tools circumvents the early and accurate detection of individuals with post-kala-azar dermal leishmaniasis (PKDL). Here, we evaluate a design-locked loop-mediated isothermal amplification (LAMP) assay to diagnose PKDL. A total of 76 snip-skin samples collected from individuals with probable PKDL (clinical presentation and a positive rK39 rapid diagnostic test (RDT)) were assessed by microscopy, qPCR, and LAMP. An equal number of age and sex-matched healthy controls were included to determine the specificity of the LAMP assay. The LAMP assay with a Qiagen DNA extraction (Q-LAMP) showed a promising sensitivity of 72.37% (95% CI: 60.91-82.01%) for identifying the PKDL cases. LAMP assay sensitivity declined when the DNA was extracted using a boil-spin method. Q-qPCR showed 68.42% (56.75-78.61%) sensitivity, comparable to LAMP and with an excellent agreement, whereas the microscopy exhibited a weak sensitivity of 39.47% (28.44-51.35%). When microscopy and/or qPCR were considered the gold standard, Q-LAMP exhibited an elevated sensitivity of 89.7% (95% CI: 78.83-96.11%) for detection of PKDL cases and Bayesian latent class modeling substantiated the excellent sensitivity of the assay. All healthy controls were found to be negative. Notwithstanding the optimum efficiency of the LAMP assay towards the detection of PKDL cases, further optimization of the boil-spin method is warranted to permit remote use of the assay.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Dermatopatias Parasitárias , Animais , Humanos , Leishmaniose Visceral/diagnóstico , Leishmania donovani/genética , Parasitos/genética , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/parasitologia , Teorema de Bayes , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA